
javaproperties
Release 0.4.0

2017 Apr 22

Contents

1 Simple Line-Oriented .properties Format 3
1.1 Format Overview . 3
1.2 Functions . 4

2 XML .properties Format 7
2.1 Format Overview . 7
2.2 Functions . 7

3 Properties Class 11

4 PropertiesFile Class 15

5 Low-Level Utilities 17

6 Command-Line Utilities 19

7 Indices and tables 21

Python Module Index 23

i

ii

javaproperties, Release 0.4.0

javaproperties provides support for reading & writing Java .properties files (both the simple line-oriented
format and XML) with a simple API based on the json module — though, for recovering Java addicts, it also
includes a Properties class intended to match the behavior of Java 8’s java.net.Properties as much as is
Pythonically possible.

Previous versions of javaproperties included command-line programs for basic manipulation of .
properties files. As of version 0.4.0, these programs have been split off into a separate package,
javaproperties-cli.

Note: Throughout the following, “text string” means a Unicode character string — unicode in Python 2, str in
Python 3.

Contents 1

https://en.wikipedia.org/wiki/.properties
https://docs.python.org/3/library/json.html#module-json
https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html
http://javaproperties-cli.readthedocs.io
https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/3/library/stdtypes.html#str

javaproperties, Release 0.4.0

2 Contents

CHAPTER 1

Simple Line-Oriented .properties Format

Format Overview

The simple line-oriented .properties file format consists of a series of key-value string pairs, one (or fewer) per
line, with the key & value separated by the first occurrence of an equals sign (=, optionally with surrounding whites-
pace), a colon (:, optionally with surrounding whitespace), or non-leading whitespace. A line without a separator is
treated as a key whose value is the empty string. If the same key occurs more than once in a single file, only its last
value is used.

Note: Lines are terminated by \n (LF), \r\n (CR LF), or \r (CR).

Note: For the purposes of this format, only the space character (ASCII 0x20), the tab character (ASCII 0x09), and
the form feed character (ASCII 0x0C) count as whitespace.

Leading whitespace on a line is ignored, but trailing whitespace (after stripping trailing newlines) is not. Lines whose
first non-whitespace character is # or ! (not escaped) are comments and are ignored.

Entries can be extended across multiple lines by ending all but the last line with a backslash; the backslash, the line
ending after it, and any leading whitespace on the next line will all be discarded. A backslash at the end of a comment
line has no effect. A comment line after a line that ends with a backslash is treated as part of a normal key-value entry,
not as a comment.

Occurrences of =, :, #, !, and whitespace inside a key or value are escaped with a backslash. In addition, the following
escape sequences are recognized:

\t \n \f \r \uXXXX \\

If a backslash is followed by any other character, the backslash is dropped.

By default, keys & values in .properties files are encoded in ASCII, and comments are encoded in Latin-1;
characters outside these ranges, along with any unprintable characters, are escaped with the escape sequences listed

3

javaproperties, Release 0.4.0

above. Unicode characters outside the Basic Multilingual Plane are first converted to UTF-16 surrogate pairs before
escaping with \uXXXX escapes.

Functions

javaproperties.dump(props, fp, separator=u’=’, comments=None, timestamp=True, sort_keys=False)
Write a series of key-value pairs to a file in simple line-oriented .properties format.

Parameters

• props – A mapping or iterable of (key, value) pairs to write to fp. All keys and
values in props must be text strings. If sort_keys is False, the entries are output in
iteration order.

• fp – A file-like object to write the values of props to. It must have been opened as a text
file with a Latin-1-compatible encoding.

• separator (text string) – The string to use for separating keys & values. Only "
", "=", and ":" (possibly with added whitespace) should ever be used as the separator.

• comments (text string or None) – if non-None, comments will be written to fp as a
comment before any other content

• timestamp (None, bool, number, or datetime.datetime) – If neither None nor
False, a timestamp in the form of Mon Sep 02 14:00:54 EDT 2016 is written as
a comment to fp after comments (if any) and before the key-value pairs. If timestamp
is True, the current date & time is used. If it is a number, it is converted from seconds since
the epoch to local time. If it is a datetime.datetime object, its value is used directly,
with naïve objects assumed to be in the local timezone.

• sort_keys (bool) – if true, the elements of props are sorted lexicographically by key
in the output

Returns None

javaproperties.dumps(props, separator=u’=’, comments=None, timestamp=True, sort_keys=False)
Convert a series of key-value pairs to a text string in simple line-oriented .properties format.

Parameters

• props – A mapping or iterable of (key, value) pairs to serialize. All keys and values
in props must be text strings. If sort_keys is False, the entries are output in iteration
order.

• separator (text string) – The string to use for separating keys & values. Only "
", "=", and ":" (possibly with added whitespace) should ever be used as the separator.

• comments (text string or None) – if non-None, comments will be output as a comment
before any other content

• timestamp (None, bool, number, or datetime.datetime) – If neither None nor
False, a timestamp in the form of Mon Sep 02 14:00:54 EDT 2016 is output as
a comment after comments (if any) and before the key-value pairs. If timestamp is
True, the current date & time is used. If it is a number, it is converted from seconds since
the epoch to local time. If it is a datetime.datetime object, its value is used directly,
with naïve objects assumed to be in the local timezone.

• sort_keys (bool) – if true, the elements of props are sorted lexicographically by key
in the output

4 Chapter 1. Simple Line-Oriented .properties Format

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool

javaproperties, Release 0.4.0

Return type text string

javaproperties.load(fp, object_pairs_hook=<type ‘dict’>)
Parse the contents of the readline-supporting file-like object fp as a simple line-oriented .properties
file and return a dict of the key-value pairs.

fp may be either a text or binary filehandle, with or without universal newlines enabled. If it is a binary
filehandle, its contents are decoded as Latin-1.

By default, the key-value pairs extracted from fp are combined into a dict with later occurrences of
a key overriding previous occurrences of the same key. To change this behavior, pass a callable as the
object_pairs_hook argument; it will be called with one argument, a generator of (key, value) pairs
representing the key-value entries in fp (including duplicates) in order of occurrence. load will then return
the value returned by object_pairs_hook.

Parameters

• fp (file-like object) – the file from which to read the .properties document

• object_pairs_hook (callable) – class or function for combining the key-value
pairs

Return type dict of text strings or the return value of object_pairs_hook

javaproperties.loads(s, object_pairs_hook=<type ‘dict’>)
Parse the contents of the string s as a simple line-oriented .properties file and return a dict of the key-
value pairs.

s may be either a text string or bytes string. If it is a bytes string, its contents are decoded as Latin-1.

By default, the key-value pairs extracted from s are combined into a dict with later occurrences of a
key overriding previous occurrences of the same key. To change this behavior, pass a callable as the
object_pairs_hook argument; it will be called with one argument, a generator of (key, value) pairs
representing the key-value entries in s (including duplicates) in order of occurrence. loads will then return
the value returned by object_pairs_hook.

Parameters

• s (string) – the string from which to read the .properties document

• object_pairs_hook (callable) – class or function for combining the key-value
pairs

Return type dict of text strings or the return value of object_pairs_hook

1.2. Functions 5

https://docs.python.org/3/library/io.html#io.IOBase.readline
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#dict

javaproperties, Release 0.4.0

6 Chapter 1. Simple Line-Oriented .properties Format

CHAPTER 2

XML .properties Format

Format Overview

The XML .properties file format encodes a series of key-value string pairs (and optionally also a comment) as
an XML document conforming to the following Document Type Definition (published at <http://java.sun.com/dtd/
properties.dtd>):

<!ELEMENT properties (comment?, entry*)>
<!ATTLIST properties version CDATA #FIXED "1.0">
<!ELEMENT comment (#PCDATA)>
<!ELEMENT entry (#PCDATA)>
<!ATTLIST entry key CDATA #REQUIRED>

Functions

javaproperties.dump_xml(props, fp, comment=None, encoding=u’UTF-8’, sort_keys=False)
Write a series props of key-value pairs to a binary filehandle fp in the format of an XML properties file. The
file will include both an XML declaration and a doctype declaration.

Parameters

• props – A mapping or iterable of (key, value) pairs to write to fp. All keys and
values in props must be text strings. If sort_keys is False, the entries are output in
iteration order.

• fp (binary file-like object) – a file-like object to write the values of props to

• comment (text string or None) – if non-None, comment will be output as a <comment>
element before the <entry> elements

• encoding (string) – the name of the encoding to use for the XML document (also
included in the XML declaration)

7

http://java.sun.com/dtd/properties.dtd
http://java.sun.com/dtd/properties.dtd
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/string.html#module-string

javaproperties, Release 0.4.0

• sort_keys (bool) – if true, the elements of props are sorted lexicographically by key
in the output

Returns None

javaproperties.dumps_xml(props, comment=None, sort_keys=False)
Convert a series props of key-value pairs to a text string containing an XML properties document. The docu-
ment will include a doctype declaration but not an XML declaration.

Parameters

• props – A mapping or iterable of (key, value) pairs to serialize. All keys and values
in props must be text strings. If sort_keys is False, the entries are output in iteration
order.

• comment (text string or None) – if non-None, comment will be output as a <comment>
element before the <entry> elements

• sort_keys (bool) – if true, the elements of props are sorted lexicographically by key
in the output

Return type text string

javaproperties.load_xml(fp, object_pairs_hook=<type ‘dict’>)
Parse the contents of the file-like object fp as an XML properties file and return a dict of the key-value pairs.

Beyond basic XML well-formedness, load_xml only checks that the root element is named “properties”
and that all of its <entry> children have key attributes. No further validation is performed; if any <entry>s
happen to contain nested tags, the behavior is undefined.

By default, the key-value pairs extracted from fp are combined into a dict with later occurrences of
a key overriding previous occurrences of the same key. To change this behavior, pass a callable as the
object_pairs_hook argument; it will be called with one argument, a generator of (key, value) pairs
representing the key-value entries in fp (including duplicates) in order of occurrence. load_xml will then
return the value returned by object_pairs_hook.

Note: This uses xml.etree.ElementTree for parsing, which does not have decent support for unicode
input in Python 2. Files containing non-ASCII characters need to be opened in binary mode in Python 2, while
Python 3 accepts both binary and text input.

Parameters

• fp (file-like object) – the file from which to read the XML properties document

• object_pairs_hook (callable) – class or function for combining the key-value
pairs

Return type dict or the return value of object_pairs_hook

Raises ValueError – if the root of the XML tree is not a <properties> tag or an <entry>
element is missing a key attribute

javaproperties.loads_xml(s, object_pairs_hook=<type ‘dict’>)
Parse the contents of the string s as an XML properties document and return a dict of the key-value pairs.

Beyond basic XML well-formedness, loads_xml only checks that the root element is named “properties”
and that all of its <entry> children have key attributes. No further validation is performed; if any <entry>s
happen to contain nested tags, the behavior is undefined.

8 Chapter 2. XML .properties Format

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict

javaproperties, Release 0.4.0

By default, the key-value pairs extracted from s are combined into a dict with later occurrences of a
key overriding previous occurrences of the same key. To change this behavior, pass a callable as the
object_pairs_hook argument; it will be called with one argument, a generator of (key, value) pairs
representing the key-value entries in s (including duplicates) in order of occurrence. loads_xml will then
return the value returned by object_pairs_hook.

Note: This uses xml.etree.ElementTree for parsing, which does not have decent support for unicode
input in Python 2. Strings containing non-ASCII characters need to be encoded as bytes in Python 2 (Use either
UTF-8 or UTF-16 if the XML document does not contain an encoding declaration), while Python 3 accepts both
binary and text input.

Parameters

• s (string) – the string from which to read the XML properties document

• object_pairs_hook (callable) – class or function for combining the key-value
pairs

Return type dict or the return value of object_pairs_hook

Raises ValueError – if the root of the XML tree is not a <properties> tag or an <entry>
element is missing a key attribute

2.2. Functions 9

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError

javaproperties, Release 0.4.0

10 Chapter 2. XML .properties Format

CHAPTER 3

Properties Class

class javaproperties.Properties(data=None, defaults=None)
A port of Java 8’s java.net.Properties that tries to match its behavior as much as is Pythonically pos-
sible. Properties behaves like a normal MutableMapping class (i.e., you can do props[key] =
value and so forth), except that it may only be used to store strings (str and unicode in Python 2; just str
in Python 3). Attempts to use a non-string object as a key or value will produce a TypeError.

Parameters

• data (mapping or None) – A mapping or iterable of (key, value) pairs with which
to initialize the Properties object. All keys and values in data must be text strings.

• defaults (Properties or None) – a set of default properties that will be used as
fallback for getProperty

defaults = None
A Properties subobject used as fallback for getProperty . Only getProperty ,
propertyNames, and stringPropertyNames use this attribute; all other methods (including the
standard mapping methods) ignore it.

getProperty(key, defaultValue=None)
Fetch the value associated with the key key in the Properties object. If the key is not present,
defaults is checked, and then its defaults, etc., until either a value for key is found or the next
defaults is None, in which case defaultValue is returned.

Parameters

• key (text string) – the key to look up the value of

• defaultValue – the value to return if key is not found in the Properties object

Return type text string (if key was found)

Raises TypeError – if key is not a string

load(inStream)
Update the Properties object with the entries in a .properties file or file-like object.

11

https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError

javaproperties, Release 0.4.0

inStream may be either a text or binary filehandle, with or without universal newlines enabled. If it is a
binary filehandle, its contents are decoded as Latin-1.

Parameters inStream (file-like object) – the file from which to read the .
properties document

Returns None

loadFromXML(inStream)
Update the Properties object with the entries in the XML properties file inStream.

Beyond basic XML well-formedness, loadFromXML only checks that the root element is named
properties and that all of its entry children have key attributes; no further validation is performed.

Note: This uses xml.etree.ElementTree for parsing, which does not have decent support for
unicode input in Python 2. Files containing non-ASCII characters need to be opened in binary mode in
Python 2, while Python 3 accepts both binary and text input.

Parameters inStream (file-like object) – the file from which to read the XML prop-
erties document

Returns None

Raises ValueError – if the root of the XML tree is not a <properties> tag or an
<entry> element is missing a key attribute

propertyNames()
Returns a generator of all distinct keys in the Properties object and its defaults (and its
defaults’s defaults, etc.) in unspecified order

Return type generator of text strings

setProperty(key, value)
Equivalent to self[key] = value

store(out, comments=None)
Write the Properties object’s entries (in unspecified order) in .properties format to out, includ-
ing the current timestamp.

Parameters

• out – A file-like object to write the properties to. It must have been opened as a text file
with a Latin-1-compatible encoding.

• comments (text string or None) – If non-None, comments will be written to out as a
comment before any other content

Returns None

storeToXML(out, comment=None, encoding=’UTF-8’)
Write the Properties object’s entries (in unspecified order) in XML properties format to out.

Parameters

• out (binary file-like object) – a file-like object to write the properties to

• comment (text string or None) – if non-None, comment will be output as a
<comment> element before the <entry> elements

• encoding (string) – the name of the encoding to use for the XML document (also
included in the XML declaration)

12 Chapter 3. Properties Class

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/string.html#module-string

javaproperties, Release 0.4.0

Returns None

stringPropertyNames()
Returns a set of all keys in the Properties object and its defaults (and its defaults’s
defaults, etc.)

Return type set of text strings

13

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set

javaproperties, Release 0.4.0

14 Chapter 3. Properties Class

CHAPTER 4

PropertiesFile Class

class javaproperties.PropertiesFile(mapping=None, **kwargs)
New in version 0.3.0.

A custom mapping class for reading from, editing, and writing to a .properties file while preserving com-
ments & whitespace in the original input.

A PropertiesFile instance can be constructed from another mapping and/or iterable of pairs, after which
it will act like an OrderedDict. Alternatively, an instance can be constructed from a file or string with
PropertiesFile.load() or PropertiesFile.loads(), and the resulting instance will remember
the formatting of its input and retain that formatting when written back to a file or string with the dump() or
dumps() method. The formatting information attached to an instance pf can be forgotten by constructing
another mapping from it via dict(pf), OrderedDict(pf), or even PropertiesFile(pf) (Use the
copy() method if you want to create another PropertiesFile instance with the same data & formatting).

When not reading or writing, PropertiesFile behaves like a normal MutableMapping class (i.e., you
can do props[key] = value and so forth), except that (a) like OrderedDict, key insertion order is
remembered and is used when iterating & dumping (and reversed is supported), and (b) like Properties,
it may only be used to store strings and will raise a TypeError if passed a non-string object as key or value.

Two PropertiesFile instances compare equal iff both their key-value pairs and comment & whitespace
lines are equal and in the same order. When comparing a PropertiesFile to any other type of mapping,
only the key-value pairs are considered, and order is ignored.

PropertiesFile currently only supports reading & writing the simple line-oriented format, not XML.

copy()
Create a copy of the mapping, including formatting information

dump(fp, separator=’=’)
Write the mapping to a file in simple line-oriented .properties format.

If the instance was originally created from a file or string with PropertiesFile.load() or
PropertiesFile.loads(), then the output will include the comments and whitespace from the
original input, and any keys that haven’t been deleted or reassigned will retain their original formatting
and multiplicity. Key-value pairs that have been modified or added to the mapping will be reformatted

15

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/functions.html#reversed
https://docs.python.org/3/library/exceptions.html#TypeError

javaproperties, Release 0.4.0

with join_key_value() using the given separator. All key-value pairs are output in the order they
were defined, with new keys added to the end.

Note: Serializing a PropertiesFile instance with the dump() function instead will cause all for-
matting information to be ignored, as dump() will treat the instance like a normal mapping.

Parameters

• fp – A file-like object to write the mapping to. It must have been opened as a text file with
a Latin-1-compatible encoding.

• separator (text string) – The string to use for separating new or modified keys
& values. Only " ", "=", and ":" (possibly with added whitespace) should ever be used
as the separator.

Returns None

dumps(separator=’=’)
Convert the mapping to a text string in simple line-oriented .properties format.

If the instance was originally created from a file or string with PropertiesFile.load() or
PropertiesFile.loads(), then the output will include the comments and whitespace from the
original input, and any keys that haven’t been deleted or reassigned will retain their original formatting
and multiplicity. Key-value pairs that have been modified or added to the mapping will be reformatted
with join_key_value() using the given separator. All key-value pairs are output in the order they
were defined, with new keys added to the end.

Note: Serializing a PropertiesFile instance with the dumps() function instead will cause all
formatting information to be ignored, as dumps() will treat the instance like a normal mapping.

Parameters separator (text string) – The string to use for separating new or modified
keys & values. Only " ", "=", and ":" (possibly with added whitespace) should ever be
used as the separator.

Return type text string

classmethod load(fp)
Parse the contents of the readline-supporting file-like object fp as a simple line-oriented .
properties file and return a PropertiesFile instance.

fp may be either a text or binary filehandle, with or without universal newlines enabled. If it is a binary
filehandle, its contents are decoded as Latin-1.

Parameters fp (file-like object) – the file from which to read the .properties
document

Return type PropertiesFile

classmethod loads(s)
Parse the contents of the string s as a simple line-oriented .properties file and return a
PropertiesFile instance.

s may be either a text string or bytes string. If it is a bytes string, its contents are decoded as Latin-1.

Parameters s (string) – the string from which to read the .properties document

Return type PropertiesFile

16 Chapter 4. PropertiesFile Class

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/io.html#io.IOBase.readline
https://docs.python.org/3/library/string.html#module-string

CHAPTER 5

Low-Level Utilities

javaproperties.escape(field)
Escape a string so that it can be safely used as either a key or value in a .properties file. All non-ASCII
characters, all nonprintable or space characters, and the characters \ # ! = : are all escaped using either
the single-character escapes recognized by unescape (when they exist) or \uXXXX escapes (after converting
non-BMP characters to surrogate pairs).

Parameters field (text string) – the string to escape

Return type text string

javaproperties.java_timestamp(timestamp=True)
New in version 0.2.0.

Returns a timestamp in the format produced by Java 8’s Date.toString(), e.g.:

Mon Sep 02 14:00:54 EDT 2016

If timestamp is True (the default), the current date & time is returned.

If timestamp is None or False, an empty string is returned.

If timestamp is a number, it is converted from seconds since the epoch to local time.

If timestamp is a datetime.datetime object, its value is used directly, with naïve objects assumed to be
in the local timezone.

The timestamp is always constructed using the C locale.

Parameters timestamp (None, bool, number, or datetime.datetime) – the date & time
to display

Return type text string

javaproperties.join_key_value(key, value, separator=u’=’)
Join a key and value together into a single line suitable for adding to a simple line-oriented .properties file.
No trailing newline is added.

17

https://docs.oracle.com/javase/8/docs/api/java/util/Date.html#toString--
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime

javaproperties, Release 0.4.0

>>> join_key_value('possible separators', '= : space')
'possible\\ separators=\\= \\: space'

Parameters

• key (text string) – the key

• value (text string) – the value

• separator (text string) – the string to use for separating the key & value. Only "
", "=", and ":" (possibly with added whitespace) should ever be used as the separator.

Return type text string

javaproperties.parse(fp)
Parse the contents of the readline-supporting file-like object fp as a simple line-oriented .properties
file and return a generator of (key, value, original_lines) triples for every entry in fp (including
duplicate keys) in order of occurrence. The third element of each triple is the concatenation of the unmodified
lines in fp (including trailing newlines) from which the key and value were extracted. The generator also
includes comments and blank/all-whitespace lines found in fp, one triple per line, with the first two elements of
the triples set to None. This is the only way to extract comments from a .properties file with this library.

fp may be either a text or binary filehandle, with or without universal newlines enabled. If it is a binary
filehandle, its contents are decoded as Latin-1.

Parameters fp (file-like object) – the file from which to read the .properties docu-
ment

Return type generator of triples of text strings

javaproperties.to_comment(comment)
Convert a string to a .properties file comment. All non-Latin-1 characters in the string are escaped using
\uXXXX escapes (after converting non-BMP characters to surrogate pairs), a # is prepended to the string, any
CR LF or CR line breaks in the string are converted to LF, and a # is inserted after any line break not already
followed by a # or !. No trailing newline is added.

>>> to_comment('They say foo=bar,\r\nbut does bar=foo?')
'#They say foo=bar,\n#but does bar=foo?'

Parameters comment (text string) – the string to convert to a comment

Return type text string

javaproperties.unescape(field)
Decode escape sequences in a .properties key or value. The following escape sequences are recognized:

\t \n \f \r \uXXXX \\

If a backslash is followed by any other character, the backslash is dropped.

In addition, any valid UTF-16 surrogate pairs in the string after escape-decoding are further decoded into the
non-BMP characters they represent. (Invalid & isolated surrogate code points are left as-is.)

Parameters field (text string) – the string to decode

Return type text string

18 Chapter 5. Low-Level Utilities

https://docs.python.org/3/library/io.html#io.IOBase.readline
https://docs.python.org/3/library/constants.html#None

CHAPTER 6

Command-Line Utilities

As of version 0.4.0, the command-line programs have been split off into a separate package,
javaproperties-cli, which must be installed separately in order to use them. See the package’s docu-
mentation for details.

19

https://github.com/jwodder/javaproperties-cli
http://javaproperties-cli.readthedocs.io
http://javaproperties-cli.readthedocs.io

javaproperties, Release 0.4.0

20 Chapter 6. Command-Line Utilities

CHAPTER 7

Indices and tables

• genindex

• search

21

javaproperties, Release 0.4.0

22 Chapter 7. Indices and tables

Python Module Index

j
javaproperties, 1

23

javaproperties, Release 0.4.0

24 Python Module Index

Index

C
copy() (javaproperties.PropertiesFile method), 15

D
defaults (javaproperties.Properties attribute), 11
dump() (in module javaproperties), 4
dump() (javaproperties.PropertiesFile method), 15
dump_xml() (in module javaproperties), 7
dumps() (in module javaproperties), 4
dumps() (javaproperties.PropertiesFile method), 16
dumps_xml() (in module javaproperties), 8

E
escape() (in module javaproperties), 17

G
getProperty() (javaproperties.Properties method), 11

J
java_timestamp() (in module javaproperties), 17
javaproperties (module), 1
join_key_value() (in module javaproperties), 17

L
load() (in module javaproperties), 5
load() (javaproperties.Properties method), 11
load() (javaproperties.PropertiesFile class method), 16
load_xml() (in module javaproperties), 8
loadFromXML() (javaproperties.Properties method), 12
loads() (in module javaproperties), 5
loads() (javaproperties.PropertiesFile class method), 16
loads_xml() (in module javaproperties), 8

P
parse() (in module javaproperties), 18
Properties (class in javaproperties), 11
PropertiesFile (class in javaproperties), 15
propertyNames() (javaproperties.Properties method), 12

S
setProperty() (javaproperties.Properties method), 12
store() (javaproperties.Properties method), 12
storeToXML() (javaproperties.Properties method), 12
stringPropertyNames() (javaproperties.Properties

method), 13

T
to_comment() (in module javaproperties), 18

U
unescape() (in module javaproperties), 18

25

	Simple Line-Oriented .properties Format
	Format Overview
	Functions

	XML .properties Format
	Format Overview
	Functions

	Properties Class
	PropertiesFile Class
	Low-Level Utilities
	Command-Line Utilities
	Indices and tables
	Python Module Index

