
javaproperties
Release 0.7.0

John T. Wodder II

2020 Mar 09

CONTENTS

1 Simple Line-Oriented .properties Format 3
1.1 Format Overview . 3
1.2 File Encoding . 4
1.3 Functions . 4

2 XML .properties Format 7
2.1 Format Overview . 7
2.2 Functions . 8

3 Properties Class 11

4 PropertiesFile Class 15

5 Low-Level Utilities 19
5.1 Low-Level Parsing . 21
5.2 Custom Encoding Error Handler . 22

6 Command-Line Utilities 23

7 Changelog 25
7.1 v0.7.0 (2020-03-09) . 25
7.2 v0.6.0 (2020-02-28) . 25
7.3 v0.5.2 (2019-04-08) . 25
7.4 v0.5.1 (2018-10-25) . 26
7.5 v0.5.0 (2018-09-18) . 26
7.6 v0.4.0 (2017-04-22) . 26
7.7 v0.3.0 (2017-04-13) . 26
7.8 v0.2.1 (2017-03-20) . 26
7.9 v0.2.0 (2016-11-14) . 26
7.10 v0.1.0 (2016-10-02) . 27

8 Installation 29

9 Examples 31

10 Indices and tables 33

Python Module Index 35

Index 37

i

ii

javaproperties, Release 0.7.0

GitHub | PyPI | Documentation | Issues | Changelog

CONTENTS 1

https://github.com/jwodder/javaproperties
https://pypi.org/project/javaproperties
https://javaproperties.readthedocs.io
https://github.com/jwodder/javaproperties/issues

javaproperties, Release 0.7.0

2 CONTENTS

CHAPTER

ONE

SIMPLE LINE-ORIENTED .PROPERTIES FORMAT

1.1 Format Overview

The simple line-oriented .properties file format consists of a series of key-value string pairs, one (or fewer) per
line, with the key & value separated by the first occurrence of an equals sign (=, optionally with surrounding whites-
pace), a colon (:, optionally with surrounding whitespace), or non-leading whitespace. A line without a separator is
treated as a key whose value is the empty string. If the same key occurs more than once in a single file, only its last
value is used.

Note: Lines are terminated by \n (LF), \r\n (CR LF), or \r (CR).

Note: For the purposes of this format, only the space character (ASCII 0x20), the tab character (ASCII 0x09), and
the form feed character (ASCII 0x0C) count as whitespace.

Leading whitespace on a line is ignored, but trailing whitespace (after stripping trailing newlines) is not. Lines whose
first non-whitespace character is # or ! (not escaped) are comments and are ignored.

Entries can be extended across multiple lines by ending all but the last line with a backslash; the backslash, the line
ending after it, and any leading whitespace on the next line will all be discarded. A backslash at the end of a comment
line has no effect. A comment line after a line that ends with a backslash is treated as part of a normal key-value entry,
not as a comment.

Occurrences of =, :, #, !, and whitespace inside a key or value are escaped with a backslash. In addition, the following
escape sequences are recognized:

\t \n \f \r \uXXXX \\

Unicode characters outside the Basic Multilingual Plane can be represented by a pair of \uXXXX escape sequences
encoding the corresponding UTF-16 surrogate pair.

If a backslash is followed by character other than those listed above, the backslash is discarded.

An example simple line-oriented .properties file:

#This is a comment.
foo=bar
baz: quux
gnusto cleesh
snowman = \u2603
goat = \ud83d\udc10

(continues on next page)

3

javaproperties, Release 0.7.0

(continued from previous page)

novalue
host\:port=127.0.0.1\:80

This corresponds to the Python dict:

{
"foo": "bar",
"baz": "quux",
"gnusto": "cleesh",
"snowman": "",
"goat": "",
"novalue": "",
"host:port": "127.0.0.1:80",

}

1.2 File Encoding

Although the load() and loads() functions accept arbitrary Unicode characters in their input, by default the
dump() and dumps() functions limit the characters in their output as follows:

• When ensure_ascii is True (the default), dump() and dumps() output keys & values in pure
ASCII; non-ASCII and unprintable characters are escaped with the escape sequences listed above. When
ensure_ascii is False, the functions instead pass all non-ASCII characters through as-is; unprintable
characters are still escaped.

• When ensure_ascii_comments is None (the default), dump() and dumps() output the comments
argument (if set) using only Latin-1 (ISO-8859-1) characters; all other characters are escaped. When
ensure_ascii_comments is True, the functions instead escape all non-ASCII characters in comments.
When ensure_ascii_comments is False, the functions instead pass all characters in comments through
as-is.

– Note that, in order to match the behavior of Java’s Properties class, unprintable ASCII characters in
comments are always passed through as-is rather than escaped.

– Newlines inside comments are not escaped, but a # is inserted after every one not already followed by a
or !.

When writing properties to a file, you must either (a) open the file using an encoding that supports all of the characters
in the formatted output or else (b) open the file using the ‘javapropertiesreplace’ error handler defined by this module.
The latter option allows one to write valid simple-format properties files in any encoding without having to worry about
whether the properties or comment contain any characters not representable in the encoding.

1.3 Functions

javaproperties.dump(props, fp, separator='=', comments=None, timestamp=True, sort_keys=False,
ensure_ascii=True, ensure_ascii_comments=None)

Write a series of key-value pairs to a file in simple line-oriented .properties format.

Changed in version 0.6.0: ensure_ascii and ensure_ascii_comments parameters added

Parameters

4 Chapter 1. Simple Line-Oriented .properties Format

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

javaproperties, Release 0.7.0

• props – A mapping or iterable of (key, value) pairs to write to fp. All keys and
values in props must be text strings. If sort_keys is False, the entries are output in
iteration order.

• fp – A file-like object to write the values of props to. It must have been opened as a text
file.

• separator (text string) – The string to use for separating keys & values. Only "
", "=", and ":" (possibly with added whitespace) should ever be used as the separator.

• comments (text string or None) – if non-None, comments will be written to fp as a
comment before any other content

• timestamp (None, bool, number, or datetime.datetime) – If neither None nor
False, a timestamp in the form of Mon Sep 02 14:00:54 EDT 2016 is written as
a comment to fp after comments (if any) and before the key-value pairs. If timestamp
is True, the current date & time is used. If it is a number, it is converted from seconds since
the epoch to local time. If it is a datetime.datetime object, its value is used directly,
with naïve objects assumed to be in the local timezone.

• sort_keys (bool) – if true, the elements of props are sorted lexicographically by key
in the output

• ensure_ascii (bool) – if true, all non-ASCII characters will be replaced with \uXXXX
escape sequences in the output; if false, non-ASCII characters will be passed through as-is

• ensure_ascii_comments – if true, all non-ASCII characters in comments will be
replaced with \uXXXX escape sequences in the output; if None, only non-Latin-1 characters
will be escaped; if false, no characters will be escaped

Returns None

javaproperties.dumps(props, separator='=', comments=None, timestamp=True, sort_keys=False, en-
sure_ascii=True, ensure_ascii_comments=None)

Convert a series of key-value pairs to a text string in simple line-oriented .properties format.

Changed in version 0.6.0: ensure_ascii and ensure_ascii_comments parameters added

Parameters

• props – A mapping or iterable of (key, value) pairs to serialize. All keys and values
in props must be text strings. If sort_keys is False, the entries are output in iteration
order.

• separator (text string) – The string to use for separating keys & values. Only "
", "=", and ":" (possibly with added whitespace) should ever be used as the separator.

• comments (text string or None) – if non-None, comments will be output as a comment
before any other content

• timestamp (None, bool, number, or datetime.datetime) – If neither None nor
False, a timestamp in the form of Mon Sep 02 14:00:54 EDT 2016 is output as
a comment after comments (if any) and before the key-value pairs. If timestamp is
True, the current date & time is used. If it is a number, it is converted from seconds since
the epoch to local time. If it is a datetime.datetime object, its value is used directly,
with naïve objects assumed to be in the local timezone.

• sort_keys (bool) – if true, the elements of props are sorted lexicographically by key
in the output

• ensure_ascii (bool) – if true, all non-ASCII characters will be replaced with \uXXXX
escape sequences in the output; if false, non-ASCII characters will be passed through as-is

1.3. Functions 5

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

javaproperties, Release 0.7.0

• ensure_ascii_comments – if true, all non-ASCII characters in comments will be
replaced with \uXXXX escape sequences in the output; if None, only non-Latin-1 characters
will be escaped; if false, no characters will be escaped

Return type text string

javaproperties.load(fp, object_pairs_hook=<class 'dict'>)
Parse the contents of the readline-supporting file-like object fp as a simple line-oriented .properties
file and return a dict of the key-value pairs.

fp may be either a text or binary filehandle, with or without universal newlines enabled. If it is a binary
filehandle, its contents are decoded as Latin-1.

By default, the key-value pairs extracted from fp are combined into a dict with later occurrences of
a key overriding previous occurrences of the same key. To change this behavior, pass a callable as the
object_pairs_hook argument; it will be called with one argument, a generator of (key, value) pairs
representing the key-value entries in fp (including duplicates) in order of occurrence. load will then return
the value returned by object_pairs_hook.

Changed in version 0.5.0: Invalid \uXXXX escape sequences will now cause an InvalidUEscapeError to
be raised

Parameters

• fp (file-like object) – the file from which to read the .properties document

• object_pairs_hook (callable) – class or function for combining the key-value
pairs

Return type dict of text strings or the return value of object_pairs_hook

Raises InvalidUEscapeError – if an invalid \uXXXX escape sequence occurs in the input

javaproperties.loads(s, object_pairs_hook=<class 'dict'>)
Parse the contents of the string s as a simple line-oriented .properties file and return a dict of the key-
value pairs.

s may be either a text string or bytes string. If it is a bytes string, its contents are decoded as Latin-1.

By default, the key-value pairs extracted from s are combined into a dict with later occurrences of a
key overriding previous occurrences of the same key. To change this behavior, pass a callable as the
object_pairs_hook argument; it will be called with one argument, a generator of (key, value) pairs
representing the key-value entries in s (including duplicates) in order of occurrence. loads will then return
the value returned by object_pairs_hook.

Changed in version 0.5.0: Invalid \uXXXX escape sequences will now cause an InvalidUEscapeError to
be raised

Parameters

• s (string) – the string from which to read the .properties document

• object_pairs_hook (callable) – class or function for combining the key-value
pairs

Return type dict of text strings or the return value of object_pairs_hook

Raises InvalidUEscapeError – if an invalid \uXXXX escape sequence occurs in the input

6 Chapter 1. Simple Line-Oriented .properties Format

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/io.html#io.IOBase.readline
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

CHAPTER

TWO

XML .PROPERTIES FORMAT

2.1 Format Overview

The XML .properties file format encodes a series of key-value string pairs (and optionally also a comment) as
an XML document conforming to the following Document Type Definition (published at <http://java.sun.com/dtd/
properties.dtd>):

<!ELEMENT properties (comment?, entry*)>
<!ATTLIST properties version CDATA #FIXED "1.0">
<!ELEMENT comment (#PCDATA)>
<!ELEMENT entry (#PCDATA)>
<!ATTLIST entry key CDATA #REQUIRED>

An example XML .properties file:

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>This is a comment.</comment>
<entry key="foo">bar</entry>
<entry key="snowman"></entry>
<entry key="goat"></entry>
<entry key="host:port">127.0.0.1:80</entry>
</properties>

This corresponds to the Python dict:

{
"foo": "bar",
"snowman": "",
"goat": "",
"host:port": "127.0.0.1:80",

}

7

http://java.sun.com/dtd/properties.dtd
http://java.sun.com/dtd/properties.dtd
https://docs.python.org/3/library/stdtypes.html#dict

javaproperties, Release 0.7.0

2.2 Functions

javaproperties.dump_xml(props, fp, comment=None, encoding='UTF-8', sort_keys=False)
Write a series props of key-value pairs to a binary filehandle fp in the format of an XML properties file. The
file will include both an XML declaration and a doctype declaration.

Parameters

• props – A mapping or iterable of (key, value) pairs to write to fp. All keys and
values in props must be text strings. If sort_keys is False, the entries are output in
iteration order.

• fp (binary file-like object) – a file-like object to write the values of props to

• comment (text string or None) – if non-None, comment will be output as a <comment>
element before the <entry> elements

• encoding (string) – the name of the encoding to use for the XML document (also
included in the XML declaration)

• sort_keys (bool) – if true, the elements of props are sorted lexicographically by key
in the output

Returns None

javaproperties.dumps_xml(props, comment=None, sort_keys=False)
Convert a series props of key-value pairs to a text string containing an XML properties document. The docu-
ment will include a doctype declaration but not an XML declaration.

Parameters

• props – A mapping or iterable of (key, value) pairs to serialize. All keys and values
in props must be text strings. If sort_keys is False, the entries are output in iteration
order.

• comment (text string or None) – if non-None, comment will be output as a <comment>
element before the <entry> elements

• sort_keys (bool) – if true, the elements of props are sorted lexicographically by key
in the output

Return type text string

javaproperties.load_xml(fp, object_pairs_hook=<class 'dict'>)
Parse the contents of the file-like object fp as an XML properties file and return a dict of the key-value pairs.

Beyond basic XML well-formedness, load_xml only checks that the root element is named “properties”
and that all of its <entry> children have key attributes. No further validation is performed; if any <entry>s
happen to contain nested tags, the behavior is undefined.

By default, the key-value pairs extracted from fp are combined into a dict with later occurrences of
a key overriding previous occurrences of the same key. To change this behavior, pass a callable as the
object_pairs_hook argument; it will be called with one argument, a generator of (key, value) pairs
representing the key-value entries in fp (including duplicates) in order of occurrence. load_xml will then
return the value returned by object_pairs_hook.

Note: This uses xml.etree.ElementTree for parsing, which does not have decent support for unicode
input in Python 2. Files containing non-ASCII characters need to be opened in binary mode in Python 2, while
Python 3 accepts both binary and text input.

8 Chapter 2. XML .properties Format

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
https://docs.python.org/2/library/functions.html#unicode

javaproperties, Release 0.7.0

Parameters

• fp (file-like object) – the file from which to read the XML properties document

• object_pairs_hook (callable) – class or function for combining the key-value
pairs

Return type dict or the return value of object_pairs_hook

Raises ValueError – if the root of the XML tree is not a <properties> tag or an <entry>
element is missing a key attribute

javaproperties.loads_xml(s, object_pairs_hook=<class 'dict'>)
Parse the contents of the string s as an XML properties document and return a dict of the key-value pairs.

Beyond basic XML well-formedness, loads_xml only checks that the root element is named “properties”
and that all of its <entry> children have key attributes. No further validation is performed; if any <entry>s
happen to contain nested tags, the behavior is undefined.

By default, the key-value pairs extracted from s are combined into a dict with later occurrences of a
key overriding previous occurrences of the same key. To change this behavior, pass a callable as the
object_pairs_hook argument; it will be called with one argument, a generator of (key, value) pairs
representing the key-value entries in s (including duplicates) in order of occurrence. loads_xml will then
return the value returned by object_pairs_hook.

Note: This uses xml.etree.ElementTree for parsing, which does not have decent support for unicode
input in Python 2. Strings containing non-ASCII characters need to be encoded as bytes in Python 2 (Use either
UTF-8 or UTF-16 if the XML document does not contain an encoding declaration), while Python 3 accepts both
binary and text input.

Parameters

• s (string) – the string from which to read the XML properties document

• object_pairs_hook (callable) – class or function for combining the key-value
pairs

Return type dict or the return value of object_pairs_hook

Raises ValueError – if the root of the XML tree is not a <properties> tag or an <entry>
element is missing a key attribute

2.2. Functions 9

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError

javaproperties, Release 0.7.0

10 Chapter 2. XML .properties Format

CHAPTER

THREE

PROPERTIES CLASS

class javaproperties.Properties(data=None, defaults=None)
A port of Java 8’s java.util.Properties that tries to match its behavior as much as is Pythonically
possible. Properties behaves like a normal MutableMapping class (i.e., you can do props[key] =
value and so forth), except that it may only be used to store strings (str and unicode in Python 2; just str
in Python 3). Attempts to use a non-string object as a key or value will produce a TypeError.

Two Properties instances compare equal iff both their key-value pairs and defaults attributes are equal.
When comparing a Properties instance to any other type of mapping, only the key-value pairs are consid-
ered.

Changed in version 0.5.0: Properties instances can now compare equal to dicts and other mapping types

Parameters

• data (mapping or None) – A mapping or iterable of (key, value) pairs with which
to initialize the Properties instance. All keys and values in data must be text strings.

• defaults (Properties or None) – a set of default properties that will be used as
fallback for getProperty

copy()
New in version 0.5.0.

Create a shallow copy of the mapping. The copy’s defaults attribute will be the same instance as the
original’s defaults.

defaults = None
A Properties subobject used as fallback for getProperty . Only getProperty ,
propertyNames, stringPropertyNames, and __eq__ use this attribute; all other methods (in-
cluding the standard mapping methods) ignore it.

getProperty(key, defaultValue=None)
Fetch the value associated with the key key in the Properties instance. If the key is not present,
defaults is checked, and then its defaults, etc., until either a value for key is found or the next
defaults is None, in which case defaultValue is returned.

Parameters

• key (text string) – the key to look up the value of

• defaultValue – the value to return if key is not found in the Properties instance

Return type text string (if key was found)

Raises TypeError – if key is not a string

load(inStream)
Update the Properties instance with the entries in a .properties file or file-like object.

11

https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError

javaproperties, Release 0.7.0

inStream may be either a text or binary filehandle, with or without universal newlines enabled. If it is a
binary filehandle, its contents are decoded as Latin-1.

Changed in version 0.5.0: Invalid \uXXXX escape sequences will now cause an
InvalidUEscapeError to be raised

Parameters inStream (file-like object) – the file from which to read the .
properties document

Returns None

Raises InvalidUEscapeError – if an invalid \uXXXX escape sequence occurs in the input

loadFromXML(inStream)
Update the Properties instance with the entries in the XML properties file inStream.

Beyond basic XML well-formedness, loadFromXML only checks that the root element is named
properties and that all of its entry children have key attributes; no further validation is performed.

Note: This uses xml.etree.ElementTree for parsing, which does not have decent support for
unicode input in Python 2. Files containing non-ASCII characters need to be opened in binary mode in
Python 2, while Python 3 accepts both binary and text input.

Parameters inStream (file-like object) – the file from which to read the XML prop-
erties document

Returns None

Raises ValueError – if the root of the XML tree is not a <properties> tag or an
<entry> element is missing a key attribute

propertyNames()
Returns a generator of all distinct keys in the Properties instance and its defaults (and its
defaults’s defaults, etc.) in unspecified order

Return type generator of text strings

setProperty(key, value)
Equivalent to self[key] = value

store(out, comments=None)
Write the Properties instance’s entries (in unspecified order) in .properties format to out, in-
cluding the current timestamp.

Parameters

• out – A file-like object to write the properties to. It must have been opened as a text file
with a Latin-1-compatible encoding.

• comments (text string or None) – If non-None, comments will be written to out as a
comment before any other content

Returns None

storeToXML(out, comment=None, encoding='UTF-8')
Write the Properties instance’s entries (in unspecified order) in XML properties format to out.

Parameters

• out (binary file-like object) – a file-like object to write the properties to

12 Chapter 3. Properties Class

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

javaproperties, Release 0.7.0

• comment (text string or None) – if non-None, comment will be output as a
<comment> element before the <entry> elements

• encoding (string) – the name of the encoding to use for the XML document (also
included in the XML declaration)

Returns None

stringPropertyNames()
Returns a set of all keys in the Properties instance and its defaults (and its defaults’s
defaults, etc.)

Return type set of text strings

13

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set

javaproperties, Release 0.7.0

14 Chapter 3. Properties Class

CHAPTER

FOUR

PROPERTIESFILE CLASS

class javaproperties.PropertiesFile(mapping=None, **kwargs)
New in version 0.3.0.

A custom mapping class for reading from, editing, and writing to a .properties file while preserving com-
ments & whitespace in the original input.

A PropertiesFile instance can be constructed from another mapping and/or iterable of pairs, after which
it will act like an OrderedDict. Alternatively, an instance can be constructed from a file or string with
PropertiesFile.load() or PropertiesFile.loads(), and the resulting instance will remember
the formatting of its input and retain that formatting when written back to a file or string with the dump() or
dumps() method. The formatting information attached to an instance pf can be forgotten by constructing
another mapping from it via dict(pf), OrderedDict(pf), or even PropertiesFile(pf) (Use the
copy() method if you want to create another PropertiesFile instance with the same data & formatting).

When not reading or writing, PropertiesFile behaves like a normal MutableMapping class (i.e., you
can do props[key] = value and so forth), except that (a) like OrderedDict, key insertion order is
remembered and is used when iterating & dumping (and reversed is supported), and (b) like Properties,
it may only be used to store strings and will raise a TypeError if passed a non-string object as key or value.

Two PropertiesFile instances compare equal iff both their key-value pairs and comment & whitespace
lines are equal and in the same order. When comparing a PropertiesFile to any other type of mapping,
only the key-value pairs are considered, and order is ignored.

PropertiesFile currently only supports reading & writing the simple line-oriented format, not XML.

copy()
Create a copy of the mapping, including formatting information

dump(fp, separator='=')
Write the mapping to a file in simple line-oriented .properties format.

If the instance was originally created from a file or string with PropertiesFile.load() or
PropertiesFile.loads(), then the output will include the comments and whitespace from the
original input, and any keys that haven’t been deleted or reassigned will retain their original formatting
and multiplicity. Key-value pairs that have been modified or added to the mapping will be reformatted
with join_key_value() using the given separator. All key-value pairs are output in the order they
were defined, with new keys added to the end.

Note: Serializing a PropertiesFile instance with the dump() function instead will cause all for-
matting information to be ignored, as dump() will treat the instance like a normal mapping.

Parameters

15

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/functions.html#reversed
https://docs.python.org/3/library/exceptions.html#TypeError

javaproperties, Release 0.7.0

• fp – A file-like object to write the mapping to. It must have been opened as a text file with
a Latin-1-compatible encoding.

• separator (text string) – The string to use for separating new or modified keys
& values. Only " ", "=", and ":" (possibly with added whitespace) should ever be used
as the separator.

Returns None

dumps(separator='=')
Convert the mapping to a text string in simple line-oriented .properties format.

If the instance was originally created from a file or string with PropertiesFile.load() or
PropertiesFile.loads(), then the output will include the comments and whitespace from the
original input, and any keys that haven’t been deleted or reassigned will retain their original formatting
and multiplicity. Key-value pairs that have been modified or added to the mapping will be reformatted
with join_key_value() using the given separator. All key-value pairs are output in the order they
were defined, with new keys added to the end.

Note: Serializing a PropertiesFile instance with the dumps() function instead will cause all
formatting information to be ignored, as dumps() will treat the instance like a normal mapping.

Parameters separator (text string) – The string to use for separating new or modified
keys & values. Only " ", "=", and ":" (possibly with added whitespace) should ever be
used as the separator.

Return type text string

property header_comment
New in version 0.7.0.

The concatenated values of all comments at the top of the file, up to (but not including) the first key-value
pair or timestamp comment, whichever comes first. The comments are returned with comment markers
and the whitespace leading up to them removed, with line endings changed to \n, and with the line ending
on the final comment (if any) removed. Blank/all-whitespace lines among the comments are ignored.

The header comment can be changed by assigning to this property. Assigning a string s causes
everything before the first key-value pair or timestamp comment to be replaced by the output of
to_comment(s). Assigning None causes the header comment to be deleted (also achievable with
del pf.header_comment).

>>> pf = PropertiesFile.loads('''\
... #This is a comment.
... ! This is also a comment.
... #Tue Feb 25 19:13:27 EST 2020
... key = value
... zebra: apple
... ''')
>>> pf.header_comment
'This is a comment.\n This is also a comment.'
>>> pf.header_comment = 'New comment'
>>> print(pf.dumps(), end='')
#New comment
#Tue Feb 25 19:13:27 EST 2020
key = value
zebra: apple

(continues on next page)

16 Chapter 4. PropertiesFile Class

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

javaproperties, Release 0.7.0

(continued from previous page)

>>> del pf.header_comment
>>> pf.header_comment is None
True
>>> print(pf.dumps(), end='')
#Tue Feb 25 19:13:27 EST 2020
key = value
zebra: apple

classmethod load(fp)
Parse the contents of the readline-supporting file-like object fp as a simple line-oriented .
properties file and return a PropertiesFile instance.

fp may be either a text or binary filehandle, with or without universal newlines enabled. If it is a binary
filehandle, its contents are decoded as Latin-1.

Changed in version 0.5.0: Invalid \uXXXX escape sequences will now cause an
InvalidUEscapeError to be raised

Parameters fp (file-like object) – the file from which to read the .properties
document

Return type PropertiesFile

Raises InvalidUEscapeError – if an invalid \uXXXX escape sequence occurs in the input

classmethod loads(s)
Parse the contents of the string s as a simple line-oriented .properties file and return a
PropertiesFile instance.

s may be either a text string or bytes string. If it is a bytes string, its contents are decoded as Latin-1.

Changed in version 0.5.0: Invalid \uXXXX escape sequences will now cause an
InvalidUEscapeError to be raised

Parameters s (string) – the string from which to read the .properties document

Return type PropertiesFile

Raises InvalidUEscapeError – if an invalid \uXXXX escape sequence occurs in the input

property timestamp
New in version 0.7.0.

The value of the timestamp comment, with the comment marker, any whitespace leading up to it, and
the trailing newline removed. The timestamp comment is the first comment that appears to be a valid
timestamp as produced by Java 8’s Date.toString() and that does not come after any key-value
pairs; if there is no such comment, the value of this property is None.

The timestamp can be changed by assigning to this property. Assigning a string s replaces the timestamp
comment with the output of to_comment(s); no check is made as to whether the result is a valid times-
tamp comment. Assigning None or False causes the timestamp comment to be deleted (also achievable
with del pf.timestamp). Assigning any other value x replaces the timestamp comment with the
output of to_comment(java_timestamp(x)).

>>> pf = PropertiesFile.loads('''\
... #This is a comment.
... #Tue Feb 25 19:13:27 EST 2020
... key = value
... zebra: apple
... ''')

(continues on next page)

17

https://docs.python.org/3/library/io.html#io.IOBase.readline
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False

javaproperties, Release 0.7.0

(continued from previous page)

>>> pf.timestamp
'Tue Feb 25 19:13:27 EST 2020'
>>> pf.timestamp = 1234567890
>>> pf.timestamp
'Fri Feb 13 18:31:30 EST 2009'
>>> print(pf.dumps(), end='')
#This is a comment.
#Fri Feb 13 18:31:30 EST 2009
key = value
zebra: apple
>>> del pf.timestamp
>>> pf.timestamp is None
True
>>> print(pf.dumps(), end='')
#This is a comment.
key = value
zebra: apple

18 Chapter 4. PropertiesFile Class

CHAPTER

FIVE

LOW-LEVEL UTILITIES

javaproperties.escape(field, ensure_ascii=True)
Escape a string so that it can be safely used as either a key or value in a .properties file. All non-ASCII
characters, all nonprintable or space characters, and the characters \ # ! = : are all escaped using either
the single-character escapes recognized by unescape (when they exist) or \uXXXX escapes (after converting
non-BMP characters to surrogate pairs).

Changed in version 0.6.0: ensure_ascii parameter added

Parameters

• field (text string) – the string to escape

• ensure_ascii (bool) – if true, all non-ASCII characters will be replaced with \uXXXX
escape sequences in the output; if false, non-ASCII characters will be passed through as-is

Return type text string

javaproperties.java_timestamp(timestamp=True)
New in version 0.2.0.

Returns a timestamp in the format produced by Java 8’s Date.toString(), e.g.:

Mon Sep 02 14:00:54 EDT 2016

If timestamp is True (the default), the current date & time is returned.

If timestamp is None or False, an empty string is returned.

If timestamp is a number, it is converted from seconds since the epoch to local time.

If timestamp is a datetime.datetime object, its value is used directly, with naïve objects assumed to be
in the local timezone.

The timestamp is always constructed using the C locale.

Parameters timestamp (None, bool, number, or datetime.datetime) – the date & time
to display

Return type text string

javaproperties.join_key_value(key, value, separator='=', ensure_ascii=True)
Join a key and value together into a single line suitable for adding to a simple line-oriented .properties file.
No trailing newline is added.

>>> join_key_value('possible separators', '= : space')
'possible\\ separators=\\= \\: space'

Changed in version 0.6.0: ensure_ascii parameter added

19

https://docs.python.org/3/library/functions.html#bool
https://docs.oracle.com/javase/8/docs/api/java/util/Date.html#toString--
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime

javaproperties, Release 0.7.0

Parameters

• key (text string) – the key

• value (text string) – the value

• separator (text string) – the string to use for separating the key & value. Only "
", "=", and ":" (possibly with added whitespace) should ever be used as the separator.

• ensure_ascii (bool) – if true, all non-ASCII characters will be replaced with \\
uXXXX escape sequences in the output; if false, non-ASCII characters will be passed
through as-is

Return type text string

javaproperties.to_comment(comment, ensure_ascii=None)
Convert a string to a .properties file comment. Non-Latin-1 or non-ASCII characters in the string may be
escaped using \uXXXX escapes (depending on the value of ensure_ascii), a # is prepended to the string,
any CR LF or CR line breaks in the string are converted to LF, and a # is inserted after any line break not already
followed by a # or !. No trailing newline is added.

>>> to_comment('They say foo=bar,\r\nbut does bar=foo?')
'#They say foo=bar,\n#but does bar=foo?'

Changed in version 0.6.0: ensure_ascii parameter added

Parameters

• comment (text string) – the string to convert to a comment

• ensure_ascii – if true, all non-ASCII characters will be replaced with \uXXXX escape
sequences in the output; if None, only non-Latin-1 characters will be escaped; if false, no
characters will be escaped

Return type text string

javaproperties.unescape(field)
Decode escape sequences in a .properties key or value. The following escape sequences are recognized:

\t \n \f \r \uXXXX \\

If a backslash is followed by any other character, the backslash is dropped.

In addition, any valid UTF-16 surrogate pairs in the string after escape-decoding are further decoded into the
non-BMP characters they represent. (Invalid & isolated surrogate code points are left as-is.)

Changed in version 0.5.0: Invalid \uXXXX escape sequences will now cause an InvalidUEscapeError to
be raised

Parameters field (text string) – the string to decode

Return type text string

Raises InvalidUEscapeError – if an invalid \uXXXX escape sequence occurs in the input

exception javaproperties.InvalidUEscapeError(escape)
Bases: ValueError

New in version 0.5.0.

Raised when an invalid \uXXXX escape sequence (i.e., a \u not immediately followed by four hexadecimal
digits) is encountered in a simple line-oriented .properties file

escape = None
The invalid \uXXXX escape sequence encountered

20 Chapter 5. Low-Level Utilities

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError

javaproperties, Release 0.7.0

5.1 Low-Level Parsing

javaproperties.parse(src)
Parse the given data as a simple line-oriented .properties file and return a generator of
PropertiesElement objects representing the key-value pairs (as KeyValue objects), comments (as
Comment objects), and blank lines (as Whitespace objects) in the input in order of occurrence.

If the same key appears multiple times in the input, a separate KeyValue object is emitted for each entry.

src may be a text string, a bytes string, or a text or binary filehandle/file-like object supporting the readline
method (with or without universal newlines enabled). Bytes input is decoded as Latin-1.

Changed in version 0.5.0: Invalid \uXXXX escape sequences will now cause an InvalidUEscapeError to
be raised

Changed in version 0.7.0: parse() now accepts strings as input, and it now returns a generator of custom
objects instead of triples of strings

Parameters src (string or file-like object) – the .properties document

Return type Iterable[PropertiesElement]

Raises InvalidUEscapeError – if an invalid \uXXXX escape sequence occurs in the input

class javaproperties.PropertiesElement
New in version 0.7.0.

Superclass of objects returned by parse()

class javaproperties.Comment(source)
New in version 0.7.0.

Subclass of PropertiesElement representing a comment

source
The raw, unmodified input line (including trailing newlines)

is_timestamp()
Returns True iff the comment’s value appears to be a valid timestamp as produced by Java 8’s Date.
toString()

property source_stripped
Like source, but with the final trailing newline (if any) removed

property value
Returns the contents of the comment, with the comment marker, any whitespace leading up to it, and the
trailing newline removed

class javaproperties.KeyValue(key, value, source)
New in version 0.7.0.

Subclass of PropertiesElement representing a key-value entry

key
The entry’s key, after processing escape sequences

value
The entry’s value, after processing escape sequences

source
The concatenation of the raw, unmodified lines in the input (including trailing newlines) from which the
key and value were extracted

5.1. Low-Level Parsing 21

https://docs.python.org/3/library/io.html#io.IOBase.readline
https://docs.python.org/3/library/constants.html#True

javaproperties, Release 0.7.0

property source_stripped
Like source, but with the final trailing newline and line continuation (if any) removed

class javaproperties.Whitespace(source)
New in version 0.7.0.

Subclass of PropertiesElement representing a line that is either empty or contains only whitespace (and
possibly some line continuations)

source
The raw, unmodified input line (including trailing newlines)

property source_stripped
Like source, but with the final trailing newline and line continuation (if any) removed

5.2 Custom Encoding Error Handler

New in version 0.6.0.

Importing javaproperties causes a custom error handler, 'javapropertiesreplace', to be automatically
defined that can then be supplied as the errors argument to str.encode, open, or similar encoding operations in
order to cause all unencodable characters to be replaced by \uXXXX escape sequences (with non-BMP characters
converted to surrogate pairs first).

This is useful, for example, when calling javaproperties.dump(obj, fp, ensure_ascii=False)
where fp has been opened using an encoding that does not contain all Unicode characters (e.g., Latin-1); in such
a case, if errors='javapropertiesreplace' is supplied when opening fp, then any characters in a key or
value of obj that exist outside fp’s character set will be safely encoded as .properties file format-compatible
escape sequences instead of raising an error.

Note that the hexadecimal value used in a \uXXXX escape sequences is always based on the source character’s code-
point value in Unicode regardless of the target encoding:

>>> # Here we see one character encoded to the byte 0x00f0 (because that's
>>> # how the target encoding represents it) and a completely different
>>> # character encoded as the escape sequence \u00f0 (because that's its
>>> # value in Unicode):
>>> 'apple: \uF8FF; edh: \xF0'.encode('mac_roman', 'javapropertiesreplace')
b'apple: \xf0; edh: \\u00f0'

javaproperties.javapropertiesreplace_errors(e)
New in version 0.6.0.

Implements the 'javapropertiesreplace' error handling (for text encodings only): unencodable char-
acters are replaced by \uXXXX escape sequences (with non-BMP characters converted to surrogate pairs first)

22 Chapter 5. Low-Level Utilities

https://docs.python.org/3/library/stdtypes.html#str.encode
https://docs.python.org/3/library/functions.html#open

CHAPTER

SIX

COMMAND-LINE UTILITIES

As of version 0.4.0, the command-line programs have been split off into a separate package,
javaproperties-cli, which must be installed separately in order to use them. See the package’s docu-
mentation for details.

23

https://github.com/jwodder/javaproperties-cli
http://javaproperties-cli.readthedocs.io
http://javaproperties-cli.readthedocs.io

javaproperties, Release 0.7.0

24 Chapter 6. Command-Line Utilities

CHAPTER

SEVEN

CHANGELOG

7.1 v0.7.0 (2020-03-09)

• parse() now accepts strings as input

• Breaking: parse() now returns a generator of custom objects instead of triples of strings

• Gave PropertiesFile a settable timestamp property

• Gave PropertiesFile a settable header_comment property

• Handle unescaping surrogate pairs on narrow Python builds

7.2 v0.6.0 (2020-02-28)

• Include changelog in the Read the Docs site

• Support Python 3.8

• When dumping a value that begins with more than one space, only escape the first space in order to better match
Java’s behavior

• Gave dump(), dumps(), escape(), and join_key_value() an ensure_ascii parameter for op-
tionally not escaping non-ASCII characters in output

• Gave dump() and dumps() an ensure_ascii_comments parameter for controlling what characters in
the comments parameter are escaped

• Gave to_comment() an ensure_ascii parameter for controlling what characters are escaped

• Added a custom encoding error handler 'javapropertiesreplace' that encodes invalid characters as
\uXXXX escape sequences

7.3 v0.5.2 (2019-04-08)

• Added an example of each format to the format descriptions in the docs

• Fix building in non-UTF-8 environments

25

javaproperties, Release 0.7.0

7.4 v0.5.1 (2018-10-25)

• Bugfix: java_timestamp() now properly handles naïve datetime objects with fold=1

• Include installation instructions, examples, and GitHub links in the Read the Docs site

7.5 v0.5.0 (2018-09-18)

• Breaking: Invalid \uXXXX escape sequences now cause an InvalidUEscapeError to be raised

• Properties instances can now compare equal to dicts and other mapping types

• Gave Properties a copy method

• Drop support for Python 2.6 and 3.3

• Fixed a DeprecationWarning in Python 3.7

7.6 v0.4.0 (2017-04-22)

• Split off the command-line programs into a separate package, javaproperties-cli

7.7 v0.3.0 (2017-04-13)

• Added the PropertiesFile class for preserving comments in files [#1]

• The ordereddict package is now required under Python 2.6

7.8 v0.2.1 (2017-03-20)

• Bugfix to javaproperties command: Don’t die horribly on missing non-ASCII keys

• PyPy now supported

7.9 v0.2.0 (2016-11-14)

• Added a javaproperties command for basic command-line manipulating of .properties files

• Gave json2properties a --separator option

• Gave json2properties and properties2json --encoding options

• Exported the java_timestamp() function

• to_comment() now converts CR LF and CR line endings inside comments to LF

• Some minor documentation improvements

26 Chapter 7. Changelog

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#DeprecationWarning
https://github.com/jwodder/javaproperties-cli

javaproperties, Release 0.7.0

7.10 v0.1.0 (2016-10-02)

Initial release

javaproperties provides support for reading & writing Java .properties files (both the simple line-oriented
format and XML) with a simple API based on the json module — though, for recovering Java addicts, it also
includes a Properties class intended to match the behavior of Java 8’s java.util.Properties as much as
is Pythonically possible.

Previous versions of javaproperties included command-line programs for basic manipulation of .
properties files. As of version 0.4.0, these programs have been split off into a separate package,
javaproperties-cli.

Note: Throughout the documentation, “text string” means a Unicode character string — unicode in Python 2, str
in Python 3.

7.10. v0.1.0 (2016-10-02) 27

https://en.wikipedia.org/wiki/.properties
https://docs.python.org/3/library/json.html#module-json
https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html
http://javaproperties-cli.readthedocs.io
https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/3/library/stdtypes.html#str

javaproperties, Release 0.7.0

28 Chapter 7. Changelog

CHAPTER

EIGHT

INSTALLATION

Just use pip (You have pip, right?) to install javaproperties and its dependencies:

pip install javaproperties

29

https://pip.pypa.io

javaproperties, Release 0.7.0

30 Chapter 8. Installation

CHAPTER

NINE

EXAMPLES

Dump some keys & values (output order not guaranteed):

>>> properties = {"key": "value", "host:port": "127.0.0.1:80", "snowman": "", "goat":
→˓""}
>>> print(javaproperties.dumps(properties))
#Mon Sep 26 14:57:44 EDT 2016
key=value
goat=\ud83d\udc10
host\:port=127.0.0.1\:80
snowman=\u2603

Load some keys & values:

>>> javaproperties.loads('''
... #Mon Sep 26 14:57:44 EDT 2016
... key = value
... goat: \\ud83d\\udc10
... host\\:port=127.0.0.1:80
... #foo = bar
... snowman
... ''')
{'goat': '', 'host:port': '127.0.0.1:80', 'key': 'value', 'snowman': ''}

Dump some properties to a file and read them back in again:

>>> with open('example.properties', 'w', encoding='latin-1') as fp:
... javaproperties.dump(properties, fp)
...
>>> with open('example.properties', 'r', encoding='latin-1') as fp:
... javaproperties.load(fp)
...
{'goat': '', 'host:port': '127.0.0.1:80', 'key': 'value', 'snowman': ''}

Sort the properties you’re dumping:

>>> print(javaproperties.dumps(properties, sort_keys=True))
#Mon Sep 26 14:57:44 EDT 2016
goat=\ud83d\udc10
host\:port=127.0.0.1\:80
key=value
snowman=\u2603

Turn off the timestamp:

31

javaproperties, Release 0.7.0

>>> print(javaproperties.dumps(properties, timestamp=None))
key=value
goat=\ud83d\udc10
host\:port=127.0.0.1\:80
snowman=\u2603

Use your own timestamp (automatically converted to local time):

>>> print(javaproperties.dumps(properties, timestamp=1234567890))
#Fri Feb 13 18:31:30 EST 2009
key=value
goat=\ud83d\udc10
host\:port=127.0.0.1\:80
snowman=\u2603

Dump as XML:

>>> print(javaproperties.dumps_xml(properties))
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<entry key="key">value</entry>
<entry key="goat"></entry>
<entry key="host:port">127.0.0.1:80</entry>
<entry key="snowman"></entry>
</properties>

New in v0.6.0: Dump Unicode characters as-is instead of escaping them:

>>> print(javaproperties.dumps(properties, ensure_ascii=False))
#Tue Feb 25 19:13:27 EST 2020
key=value
goat=
host\:port=127.0.0.1\:80
snowman=

32 Chapter 9. Examples

CHAPTER

TEN

INDICES AND TABLES

• genindex

• search

33

javaproperties, Release 0.7.0

34 Chapter 10. Indices and tables

PYTHON MODULE INDEX

j
javaproperties, 1

35

javaproperties, Release 0.7.0

36 Python Module Index

INDEX

C
Comment (class in javaproperties), 21
copy() (javaproperties.Properties method), 11
copy() (javaproperties.PropertiesFile method), 15

D
defaults (javaproperties.Properties attribute), 11
dump() (in module javaproperties), 4
dump() (javaproperties.PropertiesFile method), 15
dump_xml() (in module javaproperties), 8
dumps() (in module javaproperties), 5
dumps() (javaproperties.PropertiesFile method), 16
dumps_xml() (in module javaproperties), 8

E
escape (javaproperties.InvalidUEscapeError at-

tribute), 20
escape() (in module javaproperties), 19

G
getProperty() (javaproperties.Properties method),

11

H
header_comment() (javaproperties.PropertiesFile

property), 16

I
InvalidUEscapeError, 20
is_timestamp() (javaproperties.Comment method),

21

J
java_timestamp() (in module javaproperties), 19
javaproperties (module), 1
javapropertiesreplace, 22
javapropertiesreplace_errors() (in module

javaproperties), 22
join_key_value() (in module javaproperties), 19

K
key (javaproperties.KeyValue attribute), 21

KeyValue (class in javaproperties), 21

L
load() (in module javaproperties), 6
load() (javaproperties.Properties method), 11
load() (javaproperties.PropertiesFile class method),

17
load_xml() (in module javaproperties), 8
loadFromXML() (javaproperties.Properties method),

12
loads() (in module javaproperties), 6
loads() (javaproperties.PropertiesFile class method),

17
loads_xml() (in module javaproperties), 9

P
parse() (in module javaproperties), 21
Properties (class in javaproperties), 11
PropertiesElement (class in javaproperties), 21
PropertiesFile (class in javaproperties), 15
propertyNames() (javaproperties.Properties

method), 12

S
setProperty() (javaproperties.Properties method),

12
source (javaproperties.Comment attribute), 21
source (javaproperties.KeyValue attribute), 21
source (javaproperties.Whitespace attribute), 22
source_stripped() (javaproperties.Comment prop-

erty), 21
source_stripped() (javaproperties.KeyValue prop-

erty), 21
source_stripped() (javaproperties.Whitespace

property), 22
store() (javaproperties.Properties method), 12
storeToXML() (javaproperties.Properties method), 12
stringPropertyNames() (javaproper-

ties.Properties method), 13

T
timestamp() (javaproperties.PropertiesFile prop-

37

javaproperties, Release 0.7.0

erty), 17
to_comment() (in module javaproperties), 20

U
unescape() (in module javaproperties), 20

V
value (javaproperties.KeyValue attribute), 21
value() (javaproperties.Comment property), 21

W
Whitespace (class in javaproperties), 22

38 Index

	Simple Line-Oriented .properties Format
	Format Overview
	File Encoding
	Functions

	XML .properties Format
	Format Overview
	Functions

	Properties Class
	PropertiesFile Class
	Low-Level Utilities
	Low-Level Parsing
	Custom Encoding Error Handler

	Command-Line Utilities
	Changelog
	v0.7.0 (2020-03-09)
	v0.6.0 (2020-02-28)
	v0.5.2 (2019-04-08)
	v0.5.1 (2018-10-25)
	v0.5.0 (2018-09-18)
	v0.4.0 (2017-04-22)
	v0.3.0 (2017-04-13)
	v0.2.1 (2017-03-20)
	v0.2.0 (2016-11-14)
	v0.1.0 (2016-10-02)

	Installation
	Examples
	Indices and tables
	Python Module Index
	Index

